4G/LTE Radio Access Network Testing Across the CPRI or OBSAI Link

by

Absolute Analysis
Agenda

• 1 - The 4G/LTE Radio Access Network (RAN) Evolution

• CPRI/OBSAI testing in the Laboratory: Investigator

• CPRI/OBSAI testing in the Field: Integris

• 3 RAN Testing Case Studies
Presenter/Corporate Info

About Absolute Analysis

• Mission: Validate serial communications
• “We never miss a bit”
• Help customers test high speed systems in:
 – Telecom
 – Military
 – Data centers
• Fully employee owned

About Speaker
Summary: RAN Testing Solutions

• Investigator
 – For the lab
 – Full CPRI/OBSAI debugging
 – Multiple ports

• Integris
 – For the field
 – RRH Installation checks
 – CPRI/OBSAI compliance
 – RF Interference analysis
2G to 4G/LTE Evolution: Multi-Technology

2G Antenna

2G Technology

RF

RRH

BBU

CPRI/OBSAI

3G Evolution

2G

3G

RRH

BBU

CPRI/OBSAI

4G/LTE

LTE

W-CDMA

Legacy

This presentation contains Proprietary Information. Not intended for public distribution.
4G/LTE Evolution: Baseband Pooling

- 2G/3G: Up to 10km
- 4G/LTE: Up to 60km

C-RAN: The Next Generation

Passive Optical Network

Baseband Pool

BBU
Challenges Arising from New Technology

- Limited RF signal availability
 - Only digital RF at the bottom of the tower
- RRH separation makes it difficult to debug commands
- Distance requires more performance testing of PON
- Multi-technology introduces complex timing issues
Visibility into the link is the key to testing the RAN. For CPRI...
RP3 Specification v.4.1
- Point-to-point serial interface up to 6.144 Gbps for Uplink/Downlink telecom Data, Control & Sync.
- Support all air-interface standards (GSM/EDGE, WCDMA/LTE, 802.16d-e, CDMA2000)
- The stack is based on a packet concept using a layered protocol with fixed length messages
- IQ Sample envelope size is fixed and defined from the air-interface used.

RP3-01 has fixed Msg & sample envelope size
LTE Radio Access Networks

Major Testing Stages

- **Development:** Development and integration of RRH and BBU in **Laboratory**
- **Deployment:** Installation of RRH and BBU in the **field**
- **Operations:** Monitoring anomalies and RF interference

Diagram:

- RRH
- CPRI or OBSAI link
- DWDM PON
- BBU
Section 2

DEVELOPMENT: DEBUGGING CPRI/OBSAI IN THE LABORATORY

INVESTIGATOR INTRODUCTION
INVESTIGATOR™
A Comprehensive High-Speed Serial Protocol Test System

- Monitor and Capture Data
- Inject errors and delay
- Decode IQ Data
- Decode Control Data
- Generate OBSAI traffic
- BER Testing
Detailed Type of Testing

- **Testing for Protocol Compliance**
 - Proper HFN, BFN incrementing
 - Control word formatting
 - Boot up sequence debugging

- **RRH/BBU Control and Management**
 - When RRH receives command, what is it’s response? And vice versa?
 - What is the latency of any one device?

- **RF Analysis**
 - Are my DPD algorithms working?
 - Is the problem in my baseband IQ or my RRH modulation?

- **Stress Testing**
 - Inject errors via traffic generation
 - Introduce delay into link
Solution: Visibility

- Find Where the Problems Are Quickly
- Stop the finger pointing
- Visibility into:
 - L1 Inband
 - C&M Layer
 - IQ Data
 - Vendor specific data
- No other tool in the world can do this.

Investigator Visibility
- Protocol specific data
- Control & Management Data
- Vendor specific data
- IQ data of RF signal
Development Stage’s #1 Problem

WHERE is my problem?

RRH Team
Software Team
RF Engineers

BBU Team
Hardware Team
DSP Engineers
Network Connection: Interpose Mode
Network Connection: Tap Mode
CPRI Compliance Testing

SYNC and L1 Inband Monitoring and Capture

- User Plane
- Control & Management Plane
- SYNC

Layer 2
- IQ Data
- Vendor Specific
- Ethernet
- HDLC
- L1 Inband Protocol

Layer 1
- Time Division Multiplexing
- Electrical Transmission
- Optical Transmission
OBSAI Compliance Testing
OBSAI Type Field

4.4.7 Message Format – TYPE Field

Application layer is responsible for defining the type of the message. The TYPE field identifies the content of payload data. The following table presents the possible payload types.

Table 12: Content of type field.

<table>
<thead>
<tr>
<th>Payload data type</th>
<th>Content of Type field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>00000</td>
</tr>
<tr>
<td>Measurement</td>
<td>00001</td>
</tr>
<tr>
<td>WCDMA/FDD</td>
<td>00010</td>
</tr>
<tr>
<td>WCDMA/TDD</td>
<td>00011</td>
</tr>
<tr>
<td>GSM/EDGE</td>
<td>00100</td>
</tr>
<tr>
<td>TETRA</td>
<td>00101</td>
</tr>
<tr>
<td>CDMA2000</td>
<td>00110</td>
</tr>
<tr>
<td>WLAN</td>
<td>00111</td>
</tr>
<tr>
<td>LOOPBACK</td>
<td>01000</td>
</tr>
<tr>
<td>Frame clock burst</td>
<td>01001</td>
</tr>
<tr>
<td>Ethernet</td>
<td>01010</td>
</tr>
<tr>
<td>RTT message</td>
<td>01011</td>
</tr>
<tr>
<td>802.16</td>
<td>01100</td>
</tr>
<tr>
<td>Virtual HW reset</td>
<td>01101</td>
</tr>
<tr>
<td>LTE</td>
<td>01110</td>
</tr>
<tr>
<td>Generic Packet</td>
<td>01111</td>
</tr>
<tr>
<td>Multi-hop RTT message</td>
<td>10000</td>
</tr>
<tr>
<td>Currently not in use</td>
<td>10001-11111</td>
</tr>
</tbody>
</table>
Capture Link Data for Debug

- Trigger on any control word byte
- Execute Trigger Instructions
 - Capture
 - Start statistics
 - Send Sync signal out
- Captures:
 - All frame data
 - Control data
 - Sync data
 - Up to 13 continuous LTE radio frames (4Gb buffer)
Monitor Link Health in Real Time

- Performance Statistics
 - Frames transmitted
 - BER
 - Latency
 - Message group count
 - Radio frame count
Automated CPRI Slave (RE) Compliance Testing

- Test Center
- 450 Automated CPRI Compliance tests
- Tests RRH
- Customizable test parameters
- Pass/Fail indicators
- Test Reports
RRH/BBU Command Layer Debug

• Monitor and Capture Command Layer
 – CPRI: Fast C&M
 – OBSAI: Ethernet frame types

• Debug
 – Boot up sequence
 – Link maintenance messages
 – BBU to RRH commands and vice versa

Time: 10 40.040405
NPWR=300
MINOHPWR=230
MAXNUMCARR=8
MAXNUMPORTCARR=8
RF Analysis – IQ Data Extraction

- Capture RF data (IQ data)
- Output to CSV or Matlab format
- Debug
 - DFD Algorithms
 - EVM
 - Noise/Interference
Extract IQ Data

- From IQ Data, plot RF using RF Analysis software tools

Time Domain Graphs

Constellation/EVM Measurements

Spectrum Graphs
Complete Extraction Picture

Spectrum Analyzer

Digital RF Data (IQ) in CSV, text, or MATLAB

RF Software

CPRI/OBSAI link

RRH

BBU

Ethernet TCP Commands

Fast C&M Data (.PCAP or CSV)

Time: 10 40.040405
NPWR=300
MINOHPWR=230
MAXNUMCARR=8
MAXNUMPORTCARR=8

This presentation contains Proprietary Information.
Not intended for public distribution
Stress Testing

- Bit Error Rate degradation
 - Purposely maintain a selected BER
- Delay Injection
 - By Distance
 - By Time
Stress Testing: Delay Simulation

[Diagram showing two RRHs connected by a 10km delay]
Customize Protocol Decodes

• Some companies have protocol customizations
• Insert your own CPRI or OBSAI decodes for display in viewer
Investigator for Laboratory Applications

- Lab Testing Environment
 - Portable or Rackmount
 - Monitor Up to 16 links
 - Record up to 13 LTE radio frames
 - Network control via Ethernet port
Summary: Detailed Type of Testing

- **Testing for Protocol Compliance**
 - Proper HFN, BFN incrementing
 - Control word formatting
 - Boot up sequence debugging

- **RRH/BBU Control and Management**
 - When RRH receives command, what is it’s response? And vice versa?
 - What is the latency of any one device?

- **RF Analysis**
 - Are my DPD algorithms working?
 - Is the problem in my baseband IQ or my RRH modulation?

- **Stress Testing**
 - Inject errors via traffic generation
 - Introduce delay into link
Section 2

FIELD TESTING
INTEGRIS INTRODUCTION
LTE Radio Access Networks
Major Testing Stages

• Development: Development and integration of RRH and BBU in Laboratory

• Deployment: Installation of RRH and BBU in the field

• Operations: Debugging RF anomalies and interference
Integris FIELD PORTABLE TESTER

- Connects Directly into the CPRI or OBSAI link
- Cable testing and basic protocol operation
 - Bit Error rate
 - Performance testing
 - CPRI/OBSAI protocol compliance
- Reads IQ data and streams it real-time to display
Deployment Problem

- RRH installation team different from BBU installation team
- RRH normally installed first
- **Problem:** If RRH is dead after installation, you lose time and money because you need the BBU to determine this
- **Solution:** Test the RRH right after installation to determine proper working condition
The Solution: Integris RRH Tester

- CPRI or OBSAI
- Test Radio Head Installation with the push of a button
 - Bit error rate to test connectors/connections
 - Latency measurements to check cabling and/or PON performance
 - CPRI/OBSAI compliance to check basic RRH operation
- Tester Simulates the Base Station to test
- Available at ground level

We never miss a bit...
Operations: Interference Problem

• In 2G networks, the RRH and BBU were co-located in the hut
• Troubleshooting was accomplished at ground level.
The Interference Problem + The 4G RAN Evolution

• In 2G networks, the RRH and BBU were co-located in the hut.
• Troubleshooting RF Interference was easy.
The Interference Problem + The 4G RAN Evolution

- Beginning with 3G and now 4G networks, the RRH and BBU are separate
- The connection link down the tower is now digital (CPRI or OBSAI link)
- Troubleshooting now requires a “tower climb”

Digital RF Signal (CPRI or OBSAI)
The Solution: The Digital Link

- CPRI or OBSAI
- Digital Link carries:
 - Control plane data for BBU/RRH commands
 - User Plane data: RF Data in the form of IQ
- Available at the bottom of the tower
Collaboration on Analysis

- Recording of RF Data allows offline analysis
- Files can be sent to RF experts
- Export of MATLAB V5 format
- Use Signal Analysis software tools like MATLAB (Mathworks) or SignalVu (Tektronix)

Matlab Screen Shots
Section 2

3 RAN CASE STUDIES
1 – Investigator: Solving Interoperability Example

HFN/BN incrementing properly?

All CPRI/OBSAI parameters operating according to specification?
2 – Investigator: RRH-BBU
Communication Problems

Extract Fast C&M (Ethernet Channel) Data

Captured Trace Data

CPRI/OBSAI Data Extractor

To Wireshark: Ethernet Command Data (PCAP)
3 – Integris: Measuring PON Performance

- Latency Measurements
- Failover (Redundancy) Measurement
- Traffic Test Pattern Selection

Individual Port Measurements
Summary: RAN Testing Solutions

- **Investigator**
 - For the lab
 - Full CPRI/OBSAI debugging
 - Multiple ports

- **Integris**
 - For the field
 - RRH Installation checks
 - CPRI/OBSAI compliance
 - RF Interference analysis